Brome mosaic virus RNA syntheses in vitro and in barley protoplasts.

نویسندگان

  • K Sivakumaran
  • M Hema
  • C Cheng Kao
چکیده

The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brome mosaic virus defective RNAs generated during infection of barley plants.

Brome mosaic virus (BMV) purified from systemically infected barley leaves 8 weeks post-inoculation (p.i.) contained defective RNAs (D-RNAs). The D-RNAs were detected in total and virion RNAs extracted from infected plants at 8 weeks p.i. or later, but not before, when barley plants had been inoculated with virions either containing or lacking D-RNA. The D-RNAs were derived from genomic RNA3 by...

متن کامل

Positional effect of deletions on viability, especially on encapsidation, of Brome mosaic virus D-RNA in barley protoplasts.

Brome mosaic virus (BMV), a tripartite RNA plant virus, accumulates RNA3-derived defective RNAs (D-RNAs) in which 477-500 nucleotides (nt) are deleted in the central region of the 3a protein open reading frame (ORF), after prolonged infection in barley. In the present study, six artificial D-RNAs (AD-RNAs), having deletions of the same size as the naturally occurring D-RNA but at different posi...

متن کامل

Pokeweed antiviral protein inhibits brome mosaic virus replication in plant cells.

Pokeweed antiviral protein (PAP) is a ribosome-inactivating protein isolated from the pokeweed plant (Phytolacca americana) that inhibits the proliferation of several plant and animal viruses. We have shown previously that PAP and nontoxic mutants of PAP can directly depurinate brome mosaic virus (BMV) RNA in vitro, resulting in reduced viral protein translation. Here we expand on these initial...

متن کامل

Synthesis, Accumulation and Encapsidation of Individual Brome Mosaic Virus RNA Components in Barley Protoplasts

The rates of virus RNA synthesis and virion accumulation were investigated in brome mosaic virus-infected barley protoplasts. Single-stranded virus RNAs could be detected as early as 6 h after inoculation. Only RNA components I and z were detected at this time, suggesting that their synthesis is initiated relatively early in infection. The RNAs were synthesized at similar rates from t 6 to 35 h...

متن کامل

Subgenomic RNA as a riboregulator: negative regulation of RNA replication by Barley yellow dwarf virus subgenomic RNA 2.

Barley yellow dwarf virus (BYDV) generates three 3'-coterminal subgenomic RNAs (sgRNAs) in infected cells. Translation of BYDV genomic RNA (gRNA) and sgRNA1 is mediated by the BYDV cap-independent translation element (BTE) in the 3' untranslated region. sgRNAs 2 and 3 are unlikely to be mRNAs. We proposed that accumulation of sgRNA2, which contains the BTE in its 5' UTR, regulates BYDV replicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 77 10  شماره 

صفحات  -

تاریخ انتشار 2003